
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

1

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

Detection Of Data Divulged Agent

Mr.J.Maruthupandi , J.Dhanushy , M.Raji Priyang and S.V.Suruth
1,2,3,4 Department of Information Technology,MSEC,

Sivakasi, Tamilnadu, India.

 Abstract
Sometimes sensitive data must be handed over to the

supposed trusted third parties. In some situations those data

is leaked and found in the unauthorized places. At that

instant the distributor has to find out the likelihood that the

leaked agent came from one or more agents. This paper

focus on detecting when the distributor’s sensitive data has

been leaked by agents, and also in some cases, to identify

the agent that leaked the data. We present a model for

calculating “guilt” probabilities for data Leakage. We also

present algorithms for distributing objects to agents, in a

way that improves our chances of identifying a leaker. At

the end, we also consider the option of adding “fake”

objects to the distributed set.

Keywords: sensitive data, third parties, guilt probabilities,

data leakage, fake objects.

1.Introduction
 For the purpose of doing business,

sometimes sensitive data must be handled by trusted

third parties. Example Hospitals maintaining the

patients’ record, Business process outsourcing.

Demanding market conditions encourage many

companies to outsource certain business processes

(e.g. marketing, human resources) and associated

activities to a third party. This model is referred as

Business Process Outsourcing (BPO).The recent

surge in the growth of the Internet results in offering

of a wide range of web-based services, such as

database as a service, digital repositories and

libraries, e-commerce, online decision support system

etc. These applications make the digital assets, such

as digital images, video, audio, database content etc,

easily accessible by ordinary people around the world

for sharing, purchasing, distributing, or many other

purposes. The owner of the data is called as

distributor. The supposed trusted third parties are

called agents.

Fig 1: System Architecture

2.Related Work
 The guilt detection is related to data

provenance problem. Here the work mostly depends

on the watermarking .These watermarks were

initially used for image, video and audio data whose

data representation includes redundancy. The

distributed environment is provided by means of

Hadoop software. Setting the Hadoop environment

includes creating the node.Thus it is necessary to

form a hadoop cluster

3.Existing Technique
 The existing leakage detection

technique is known as watermarking. Here the

unique code is embedded with each distributed copy.

But this unique code can sometimes be destroyed.

Watermarking aims to identify a data owner and,

hence, is subject to attacks where a pirate claims

ownership of the data or weakens a merchant’s

claims. To overcome this, we study some unobtrusive

Techniques for detecting leakage of a set of records.

4.Proposed System

4.1 Data Allocation Problem
 The two types of requests we handle: sample

and explicit. Fake objects are objects generated by

the distributor that are not in set T. The objects are

designed to look like real objects, and are distributed

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

2

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

to agents together with the T objects, in order to

increase the chances of detecting agents that leak

data. Fake objects are represented using four problem

instances with the names EF, EF, SF and SF. Where

E stands for explicit requests, S for sample requests,

F for the use of fake objects, and F for the case where

fake objects are not allowed.

Fig 2: Leakage problem instances

Sample request Ri = SAMPLE (T; mi): Any subset

of mi records from T can be given to Ui.

Explicit request Ri = EXPLICIT (T; Condi): Agent

Ui receives all the T objects that satisfy condition.

The objects in T could be of any type and size, e.g.,

they could be tuples in a relation, or relations in a

database.

We represent our four problem instances with the

names EF, EF, SF and SF, where E stands for explicit

requests, for sample requests, F for the use of fake

objects, and F for the case where fake Objects are not

allowed.

4.2 Adding Fake Objects
 The distributor may be able to add

fake objects to the distributed data in order to

improve his effectiveness in detecting guilty agents.

Sometimes adding fake records may change the

correctness of what the agents do. The idea of

perturbing data to detect leakage is not new.

However, in most cases, individual objects are

perturbed, e.g., by adding random noise to sensitive

salaries, or adding a watermark to an image. In this

case, perturbing the set of distributor objects by

adding fake elements is done. In some applications,

fake objects may cause fewer problems that

perturbing real objects. For example, say the

distributed data objects are medical records and the

agents are hospitals. In this case, even small

modifications to the records of actual patients may be

undesirable. However, the addition of some fake

medical records may be acceptable, since no patient

matches these records, and hence no one will ever be

treated based on fake records.

4.3 Agent Guilt Model
 To compute P r{Gi |S}, we need an

estimate for the probability that values in S can be

“guessed” by the target. For instance, say some of the

objects in S are emails of individuals. For example

we conduct an experiment and ask a person to find an

email of 100 individuals. If this

Person can find say 90 emails, and then we can

reasonably guess that the probability of finding one

email is 0.9. On the other hand, if the objects in

question are bank account

Numbers, the person may only discover say 20,

leading to an estimate of 0.2. We call this estimate pt,

the probability that object t can be guessed by the

target.

5.Allocation Strategies
 We describe allocation strategies that solve

exactly or approximately the scalar versions of for

the different instances presented in Fig.2. We resort

to approximate solutions in cases where it is

inefficient to solve accurately the optimization

problem.

5.1 Explicit data request:
 In case of explicit data request with fake not

allowed, the distributor is not allowed to add fake

objects to the distributed data. So Data allocation is

fully defined by the agent’s data request.

In case of explicit data request with fake allowed, the

distributor cannot remove or alter the requests R from

the agent. However distributor can add the fake

object.

There are two algorithms to obtain the explicit data

request.

They are

 E-Optimal

 E-Random

In algorithm for data allocation for explicit request,

the input to this is a set of request R1, R2,…, Rn from

n agents and different

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

3

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

Conditions for requests. The e-optimal algorithm

finds the agents that are eligible to receiving fake

objects. Then create one fake object in iteration and

allocate it to the agent selected. The e-optimal

algorithm minimizes every term of the objective

summation by adding maximum number bi of fake

Objects to every set Ri yielding optimal solution.

 Allocation for Explicit Data Requests

Input: R1. Rn, cond1. . . condn, b1, . . . ,bn, B

Output: R1. Rn, F1. Fn

1: R←Ø //Agents that can receive fake objects

2: for i=1…….n do

3: if bi > 0 then

4: R ←R U {i}

5: Fi ←Ø

6: while B > 0 do

7: i ←SELECT AGENT(R; R1 . . . Rn)

8: f ←CREATE FAKE OBJECT (Ri; Fi; condi)

9: Ri ←Ri U {f}

10: Fi ←Fi U {f}

11: bi ←bi – 1

12: if bi = 0 then

13: R←R / {Ri}

14: B ←B – 1

Algorithm explanation:

 R set contains the resources

 “cond ” are used as the condition for

watermark

 B set contains the already created fake

objects

 SELECTAGENT function used to select the

agent with their needed resources R1

a) Agent Selection for E-Random:

1:function SELECTAGENT (R,R1, . . .,Rn)

2:i ←select at random an agent from R

3:return i

b) Agent selection for E-Optimal

1: Function SELECTAGENT (R, ,…,)

2: i argmax(-) |

3: return i

5.2 Sample data request

An object allocation that satisfies requests

and ignores the distributor’s objective is to give each

agent Ui a randomly selected subset of T of size mi.

The algorithms to perform sample data request

includes

 S-Random

 S-Overlap

 S-Max

Allocation for Sample Data Requests

Input: ….., , |T|

Output: R1……., Rn

1: a← //a[k]:number of agents who have

received object

2: R ← Ø……., Rn ← Ø

3: remaining ←

4: while remaining > 0 do

5: for all i=1,…., n : | Ri | < do

6: k ← SELECT OBJECT (i, Ri)

7: Ri ← Ri U { }

8: a[k] ← a[k] + 1

9: remaining ← remaining – 1

a)Object Selection for S-Random

1:function SELECTOBJECT(i,Ri)

2:k←select at random an element from set{k’| € Ri}

3:return k

b)Object Selection for S-Overlap

1:function SELECTOBJECT(i,Ri,a)

2:K←{k|k=argmin a[k’]}

 k’

3:k←select at random an element from set

 {k’|k’€ K ^ tk €Ri}

4:return k

c)Object Selection for S-Max

1:function SELECTOBJECT(i, ,…, , ,…,)

2: Min_overlap 1 the minimum out of the

maximum relative overlaps that the allocations of

different objects to Ui yield.

3:for k {k’| ’ Ri} do

4:max_rel_ov 0 the maximum relative overlap

between Ri and any set Rj that the allocation of to

Ui yields.

5:for all j=1…n:j I and ∉ Rj do
6: abs_ov |Ri
7:rel_ov abs_ov/min(mi,mj)
8:max_rel_ov Max(max_rel_ov,rel_ov)
9:if max_rel_ov ≤ min_overlap then
10:min_overlap max_rel_ov
11:ret_k k

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

4

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

12:return ret_k

Fig 3: Project Flow

6.Optimization Problem
 The distributor’s data allocation to agents

has one constraint and one objective. The

distributor’s constraint is to satisfy agents’ requests,

by providing them with the number of objects they

request or with all available objects that satisfy their

conditions. His objective is to be able to detect an

agent who leaks any portion of his data.

The objective is to maximize the chances of detecting

a guilty agent that leaks all his data objects.

The Pr {Gj |S =Ri } or simply Pr { Gj | Ri} is the

probability that Uj agent is guilty if the distributor

Discovers a leaked table S that contains all Ri objects.

The difference functions

Δ (i,j) is defined as:

Δ (i,j) = Pr {Gi|Ri}- Pr {Gj|Ri}

1) Problem definition:

 Let the distributor have data requests

from n agents. The distributor wants to give

tables R1,…..Rn to agents U1 , . . . , Un

respectively, so that

 Distribution satisfies agents’

requests; and

 Maximizes the guilt probability

differences Δ (i, j) for all i, j = 1. . .

n and i = j.

 2) Optimization problem:

 Maximize (. . . , Δ (i, j), . . .) i ! = j

 (over R1 , . . . ,Rn)

The approximation of objective of the above

equation does not depend on agent’s

probabilities

Therefore minimize the relative overlap

among the agents as

Minimize (…,

(over R1 , . . . , Rn)

7.Implementation technique
 Hadoop tool is used to form the distributed

environment. In this environment one system acts as

a master and other systems act as a slave. Entire

database is in the master system and the slaves act as

a agents. The third parties can be any other system

outside our network. The agents who act as a slave

can be a master to the third parties which will

perform the part of the slave.Leaked set can be given

as input or identified from the website.

8.Conclusion
 In a perfect world there would be no need to

hand over sensitive data to agents that may

unknowingly or maliciously leak it. And even if we

had to hand over sensitive data, in a perfect world we

could watermark each object so that we could trace

its origins with absolute certainty. However, in many

cases we must indeed work with agents that may not

be 100% trusted, and we may not be certain if a

leaked object came from an agent or from some other

source. In spite of these difficulties, we have shown it

is possible to assess the likelihood that an agent is

responsible for a leak, based on the overlap of its data

with the leaked data and the data of other agents, and

based on the probability that objects can be

“guessed” by other means. Our model is relatively

simple, but we believe it captures the essential trade-

offs.

Acknowledgement
 Students work is incomplete until they thank

the almighty & his teachers. We sincerely believe in

this and would like to thank Dr. T.Revathi, Head of

the Department, and Dr.K.Vijayalakshmi, project

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 1, March, 2013

ISSN: 2320 - 8791

www.ijreat.org

5

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

coordinator, Information and Technology,Mepco,

Sivakasi, for her encouragement and motivation to

write this paper. Also we are grateful to Mr.

J.MaruthuPandi, Assistant Professor., (IT), Mepco,

Sivakasi for guiding me in writing this paper.

References
[1] P. Papadimitriou and H. Garcia-Molina, “Data leakage

detection,” IEEE transactions on Knowledge and data

engineering, Vol.23, No.1, January 2011.

[2] R. Agrawal and J. Kiernan, “Watermarking Relational

Databases,”Proc. 28th Int’l Conf. Very Large Data Bases

(VLDB ’02), VLDB Endowment, pp. 155-166, 2002.

[3] P. Papadimitriou and H. Garcia-Molina, “Data leakage

detection,” tanford University, Tech. Rep., 2008

[4] P. Buneman, S. Khanna, and W. C. Tan. Why and

where: A characterization of data provenance. In J. V.den

Bussche and

V. Vianu, editors, Database Theory - ICDT 2001, 8th

International Conference, London, UK, January 4-

6,2001Computer Science, pages 316–330. Springer, 2001.

